
TABLE i. 
(m=.h.deg)] on Flow Velocity v (m/sec) 

Dependence of Heat-Transfer Coefficient ~ [kcal/ 

i00 [ iso I 200 t, 240 290 330 360 400 550 

350 [ 430 I 490 560 590 630 680 710 820 
I I 

The data obtained agree well with the empirical dependence ~ ~ v ~ found earlier [7]. 

NOTATION 

~, heat-transfer coefficient; Cv, heat capacity per unit volume of specimen material; 
~, coefficient of thermal expansion; t, time; l, length of cylindrical specimen; R, radius 
of cylinder; q, total power of heat losses; T(x), temperature field along specimen; I, cur- 
rent strength; U, voltage drop over specimen; A~, limiting absolute elongation of specimen. 
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COMPRESSION MECHANISM FOR TWO-COMPONENT LOOSE MEDIA MODELED BY 

SPHERICAL PARTICLES 

D. V. Khantadze and N. I. Topuridze UDC 531.731 

The packing density coefficient of two-component granular media, modeled by steel 
spheres, is investigated for a change in the fractional and concentration composi g 
tions of the mixture in a broad range of ratios between the diameters of the parti- 
cles being mixed. 

The mixing of bodies differing sharply in size results in a perceptible rise in the 
packing density coefficient (K) of a loose mass. In fact, the minimal porosity (~ = 1 -- K) 
of large volumes filled by irregular compacted identical spherical particles is independent 
of the particle size and equals No = 0.36 [I]. The minimum porosity of a binary loose mix- 
ture with sharply differing component sizes is achieved by filling all the pores between 
the large spheres with fine fractions. Hence, the latter occupy 64% of the total volume 
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of the void and the porosity of the aggregate will diminish in the limit (d2 >> d~) to ~ = 
0.36-0.36 = 0.13 for a content of =26 vol.% of the fine fraction in the mixture. 

The mechanism of the change in the coefficient K of two-component mixtures with approx- 
imately identical particle sizes d2/d~ < 2 is not evident when an additional particle cannot 
be placed in the pores between the large spheres. In particular, for small d=/d~ an additive 
change in the mixture volume is often postulated [2]. This means that compression of the 
volume ~ = 0, and since ~ = (K -- Ko)/K, the mixture packing coefficient K should not vary: 
K = Ko. 

The impression is produced that compression occurs in two-component mixtures only when 
fine particles are placed in the pores between the large spheres. 

The behavior of two-component granular media is investigated in this paper for a change 
in the fractional and concentration compositions in order to clarify the mechanism of their 
compression in a broad interval of d2/d~. In contrast to the known papers [3] in which an 
analogous problem was solved for individual compositions of granular media by not strictly 
calibrated fractions, we systematically investigated mixtures whose components were identi- 
cal steel spheres within 0.2% limits for particles of nonspherical configuration. Only in 
such a formulation of the question could a solution of theoretical value be obtained. 

The characteristics obtained are of interest for the structural theory of granular me- 
dia [3]. Questions of the packing of irregular structure are simultaneously in direct con- 
nection with problems of the theory of solutions which uses these results to produce models 
of the liquid state [4]. 

Steel balls of diameter d = 0.8, i, 1.26, 2, 2.51, 3, 3.95, and 5.13 mm were used in 
the experiments. To diminish near-wall effects, the method of a reservoir with flexible 
walls [5] was used. These walls were in the form of thin rubber tanks which were filled by 
a mixture of balls of two sizes in the concentration chosen. The air was evacuated from the 
tank with the mixture, and the aggregate obtained, which had a spherical shape, was subjected 
to multilateral compression to obtain an irregularly compactly packed statistical set of 
particles. The mixture was first mixed carefully for a uniform particle distribution. This 
is easily achieved for mixtures with a low d2/d~ ratio. For large d2/d: when small balls 
slip into the pores between the large spheres, especially for a high concentration of these 
latter, it is difficult to obtain a uniform particle distribution. However, the clustering 
of small balls in separate parts of the mixture does not influence the final result, which 
was verified by investigating a mixture of constant composition after multiple mixing. The 
spread in K did not exceed 0.5% and was within the limits of measurement accuracy. 

The space occupied by the balls (Vo) was determined by suspending the tank with the mix- 
ture in air and in alcohol with the density of the ball material taken into account. The 
intrinsic volume of the balls and the packing density K = Vs/Vo were calculated for each com- 
position. Dependences K = f(vi) were consequently constructed for different ratios d2/d~, 
where v i is the volume fraction of balls of one size. These dependences are shown in Fig. I. 
They are constructed under the conditions of adding coarse balls to the finer fraction. 
Hence, the initial one-component mass contained not less than 3.104 balls and had a Ko = 
0.646 packing density coefficient, which agrees well with the known value of Ko = 0.64, de- 
termined for an infinite volume of a single-component loose mass [i, 5]. 

As follows from the experimental results (Fig. i), mixing unequal balls always results 
in compression. The maximum value of the packing coefficient (Kmax) increases with the in- 
crease in the ratio between the diameters of the pairs being mixed and apparently approaches 
the value K = 0.87 asymptotically as d2/d: § ~ (Fig. 2). 

In connection with the facts noted, the following compression mechanism for two-component 
mixtures can be assumed. Replacing the small spheres by large ones results in compression, 
since the space occupied by a definite quantity of small spheres and the void between them 
turns out to be occupied by the large spheres. At the same time the large spheres produce 
local distortions of the initial structure of the fine fractions, forming a new kind of void 
in contact with the small balls. Hence, the introduction of the large spheres with a total 
volume V2 in the initial one-component mass of fine fractions increases the volume it occu- 
pies V~/Ko by the quantity V= + ~, where ~ is the total volume of the new kind of void. 
Therefore, the packing density coefficient for small volume contents of the coarse fraction 
can be represented for two-component mixtures by the formula 
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�9 K = V1 "~ V2 
I/I (1) 

- -  § 2 4 7  c~ 
Ko 

The volume of single pores in the contact between the large sphere with the fine balls 
increases as d2/d~ increases and becomes a maximum at the plane of the wall. However, the 
total surface grows in inverse proportion to the diameter of the dispersed particles upon 
division of a spherical volume by spherical particles, and therefore their total volume will 
be significantly less for larger values of d2/d: and the same volume composition of the 
coarse fraction. 

The following experiments were performed to estimate the influence of the new type of 
voids near the spheres on the packing process: A large sphere and the maximum quantity of 
small spheres in one layer packed on it were covered by a rubber tank. The quantity X = 
(vo -- Vs)/V s was calculated, where vo is, as before, me volume of the whole aggregate deter- 
mined by suspending the tank with the spheres in air and in alcohol, and v s is the total 
volume of the spheres. The dependence of the maximum quantity of fine spheres n making simul- 
taneous contact with a sphere of diameter d2 is shown in Fig. 2. These results are described 
satisfactorily by the inequality 

2, 3 =i 2 12 
" 3 , 

which we present without proof. 

It should be noted that such an estimate of n agrees with the results in [6], in which 
n was determined more rigorously up to d2/d: = 2.0. 

As follows from the results in Fig. 2, the quantity X = (vo -- Vs)/V s = (I/K) -- 1 in- 
creases as d2/dl diminishes and (I/Ko) -- I = 0.26/0.74 = 0.35 for d2 = dl when n = 12 (Fig. 
2), which characterizes the densest "regular" arrangement of particles (K = 0.74). Hence, 
the experimentally determined dependence % = f(d2/dl) (Fig. 2) is only a rough approximation 
of the situation observed in mixtures, since the maximum quantity of fine spheres is stacked 
on the surface of the sphere in this case. The number of spheres making contact n' in a sta- 
tistical mixture will be much less and n'~ 8 [7], for example, for a one-component mixture 
when Ko = 0.64. 

In fact, a diminution in the ratio d2/d~ [i] hinders a regular particle arrangement in 
the mixture, and the structure of the mixture becomes completely irregular as d2/d~ § I. 
Hence, the curve X = (vo -- Vs)/V s should result in the value (!/Ko) -- 1 = 0.354/0.646 = 0.55 
for irregularly compactly stacked particles with d= = d~. 

In order to clarify the nature of the change in the inner particle configuration by a 
method analogous to [7], the coordination number n' of the mixture components was investigat- 
ed for different d=/d~. An acetone dye was introduced in a mixture of spheres containing 
~i numerical percent of large spheres, and after it had dried the loose material was convert- 
ed into a hard aggregate (skeleton) permitting the computation of n' by means of tracks of 
the contacts. 

The results of these calculations (Fig. 2) show that for small d2/dl a significantly 
lower quantity of small spheres make contact with the large spheres than for a regular ar- 
rangement. It can be noted that the relative difference in the coordination numbers An/n 
of regular and irregular structures diminishes monotonically and practically vanishes for 
d2/d: > 3. This indicates that the complete order of the particles observed on flat walls 
d2 >> dl goes smoothly over into an irregular arrangement with the diminution in d2/d: and 
results in complete disorder for d2 = d:. 

The increment in the volume of voids near the spheres induced by unit volume of the 
sphere (vo -- Vs)/V s grows for fixed d2/dl when going from the regular to the irregula r 
particle arrangement, because of the diminution in the coordination number. In a first ap- 
proximation it can be assumed that the relative increment in the volume of the voids AX/X = 
(Xv _ X)/X is proportional to the relative diminution in the coordination number An/n = 
(n -- n')/n. Taking into account that An/n = 0.333 causes a relative increase in the voids 
AX/X = 0.572 for a one-component system, AX can be calculated by knowing the difference in 
the coordination numbers An, from the formula 
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Fig. i. Concentration dependence of the packing density coefficient of two-compo- 
nent mixtures with a different ratio between the diameters of the pairs being mixed; 
v i is the volume percent of large balls. 

Fig. 2. Structural characteristics of two-component mixtures: i) dependence of the 
maximum packing density coefficient (Kmax) on the ratio between the ball diameters; 
2) number of balls "regularl~'(n) and irregularly (n') making contact with a ball of 
diameter d2 > d,; 3) change in the quantity I = (vo -- Vs)/V s for the "regular" 1 
and irregular I' (open circles) locations of fine balls on a sphere. 

1.Art 
Al = 1.72 - -  (2) 

n 

The results of these computations as well as the approximating curve 

�9 (3) 

a r e  p r e s e n t e d  in  F ig .  2. 

The d e p e n d e n c e  (3) p e r m i t s  c o m p u t a t i o n  o f  t h e  volume of  t h e  new t y p e  o f  v o i d  p e r  u n i t  
volume o f  an i r r e g u l a r l y  d e n s e l y  packed  s y s t e m  o f  s p h e r e s  f o r  a g i v e n  r a t i o  be tween  t h e i r  
diameters. The total volume of voids is 

a = V2 ( Ko (4) 

for a volume V2 of spheres of the coarse fraction contained in the mixture. 

It can be noted that the quantity ~ determined in this manner satisfies the boundary 
conditions 

(1 ) 
dl = 1 ;  a =  - - - - 1  V2; K = K o ;  
d2 Ko 

d--L-+0; ~-+0; VI--~0.26; K-+0.87; 
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and (i), taking account of (4), describes the ascending part of the curve K = f(v) in the 
region of the maximum to an accuracy not lower than 1.5%. A "skeleton" of coarse fractions 
is formed in the region of the maximum and a further rise in v2 is accompanied by the orig- 
ination of additional voids between the large spheres, which results in a diminution in K. 
Hence, the compression mechanism described by (4) is valid to K = Kma x. 

Therefore, two factors play the main role in the mixing of large and fine spheres. The 
first factor is related to the selection of the existing voids between the small spheres 
upon the addition of coarse spheres and always results in compression. The second decom- 
pressing factor is related to the formations of the new kind of voids in the contacts between 
the small and large spheres. The compression factor is simultaneously always predominant 
over this latter, and hence the mixing of arbitrarily small spherical bodies of different 
size results in a rise in the packing density of the mixture. 

NOTATION 

Ko, K, packing density coefficients of a one- and two-component loose medium, respec- 
tively; ~o, H, their porosity; m, compression of the volume; d~, d2, the diameters of the 
particles being mixed (d= > d~); Vs, intrinsic volume of the spheres; vo, the volume they 
occupy; v., the volume fraction of the i-th component; V~, V=, volumes of the fractions; 

i 
n, %, coordination numbers of the large sphere and near-sphere void for a "regular" particle 
arrangement in the mixture; n', %', the same, for an irregular structure; a, total volume 
of near-spherical voids in the mixture. 

2. 
3. 
4. 
5. 
6. 

. 

LITERATURE CITED 

G. D. Scott, Nature, 188, 908 (1960). 
E. A. Moelwyn-Hughes, Physical Chemistry, 2nd ed., Pergamon (1964). 
G. V. Deresevich, in: Problems of Mechanics [in Russian], No. 3, IL, Moscow (1961). 
J. D. Bernal, Growth of Crystals [Russian translation], Vol. 5, Nauka, Moscow (1965). 
J. D. Bernal and J~ L. Finneu Nature, 214, 265 (1967). 
L. Fejes T6th, Lagerungen in der Ebene, auf der Kugel und in Raum, Springer, Berlin 
(1953). 
W. O. Smite, P. D. Foote, and P. F. Busang, Phys. Rev., 34, 1271 (1929). 

831 


